[t v Bt
THE
GOMPILER

NIBBLE REVIEW CARD

AZTEC C65 COMPILER
Manx Software Systems
Box 55, Shrewsbury, NJ 07701
$199.00

CATEGORY RATING
Performance vwwe

User Friendliness & # @
Documentation e

" Overall Rating vewew

LEGEND: Five Apples = Excellent
Four Apples = Very Good
Three Apples = Good
Two Apples = Fair
One Apple = Poor

master must be booted, for there is no DOS
on the C-system disks.

Next the SHELL can be installed with the
command BRUN SHELL. The SHELL
replaces the command interpreter part of DOS
3.3 and takes care of the interaction between
the user and the low-level 1/0 routines. This
implies that most of the familiar DOS com-
mands, such as CATALOG, BRUN, etc. are
replaced by others. The disk file format is not
changed, so files created with the C-system
can be processed by FID or other DOS 3.3
programs.

The SHELL supports the following
commands:

boot - Reboot the system.

bye - Exit to the Apple monitor.

call - Similar to the BASIC CALL in-
struction. (Hex addresses can be
specified though.)

cat - List files on the screen or send
them to another device. (For ex-
ample, to print the file marjo.c
you can enter: cat marjo.c
>pr:.)

cdice - Change the data/execution
drive.

cp - Copy files.

load/run - Load and execute a program.

(un)lock - Same as DOS 3.3 LOCK/
UNLOCK.

maxfiles - Same as DOS 3.3 MAXFILES.

Is - Same as DOS 3.3 CATALOG.

mv - Same as cp, except that the
source file is deleted.

m - Delete a file.

save - Similar to DOS 3.3 BSAVE.

It takes some time to get accustomed to the
new commands, but when you get the feel of
them, they work conveniently. The cd/ce com-
mands in particular are very handy, With cd
you can change the number or slot of the data
drive. This has the effect that by default, all
data files will be loaded from or saved on the
disk in that drive.

You can also change the number and slot
of the execution drive with the ce command.
The SHELL will then look for (nondata) files
on the execution drive if it doesn’t find them
on the data drive. This feature allows the user
to distribute utilities, compilers and libraries
over two disks, without the need to remember
where a file is stored.

The load/run commands are convenient for
those who have a one-drive System. With
“load" you can load a system (or other) pro-

gram from one disk; next, you may change
disks so that the disk with the files needed by
the system program is in the drive; and then
you can type run, followed by a parameter list.
The run command executes the most recently
loaded program and the parameter list is
passed to this program. This construct works
for most system programs, except for (among
others) the compiler.

e ——— 1

“Aztec C supports the full
Kernighan and Ritchie C-
language standard, except for
bit fields.”

e e s ——

Overall, the SHELL provides an excellent
environment for the C-programmer. Most
parts of the SHELL are written in C, which
is in itself a recommendation for the Aztec C-
system. The only noticeable effect is that the
system responds a fraction slower than DOS
33;

From SHELL command mode, programs
can be executed by entering the filename
<RETURN > On typing VED, the screen
editor is invoked. VED is also written in C
and performs reasonably well. To enter a pro-
gram, you must press the ‘I' key, which puts
you in insert mode.

On pressing <ESC >, you go back to edit
mode, and in this mode corrections can be
made. Single characters or whole lines can be
deleted or replaced. There are also commands
to go to the next or previous character/line,
to the start or end of the line, to the top or
bottom of the screen, and to the nth line of
the file. User-specified strings can be search-
ed (but not “automatically” replaced) and it
is possible to move text around.

It takes some time to learn the editor com-
mands, for the command mnemonics bear no
relationship to any other editor I have worked
with, For example, the $ symbol is used to
move the cursor to the end of a line. Fortun-
ately, this needn't worry the potential buyer
of the C-system very much, for the source of
VED is supplied on one of the disks, so that
it can easily be customized.

VED is not bug free, and this causes an
occasional system hang-up. For example, when
you start with a new file and the first thing
you do is move the cursor to the middle of the
screen (by.pressing M), you usually get some
pretty weird results. Furthermore, VED can

only handle text files but doesn't check on the
file type of the file you want to edit. So, when
you accidentally read in a binary file, there
is a good chance that you will have to reboot
to get things going again.

Overall, I would not consider these “bugs”
to be very serious though., for I noticed them
only when testing VED (i.e. searching for
bugs), and they did not bother me when [was
entering or editing text normally.

After the program has been entered and
mistakes have been corrected, it is saved on
disk and we return to the SHELL. The next
steps are compiling and linking the program.
During the compilation step, the source code
is converted to a relocatable file. Since the pro-
gram contains calls to functions that are not
part of the program (i.e. gets, atoi and printf),
these functions must also be loaded and con-
nected. This is done in the link step. During
this step, the C-system library is searched for
unresolved references.

Assuming that we name the permutation
program permutate.c, it could be compiled by
specifying:

c65 permutate.c

The compiler creates a temporary source
file (STMPS$$S) with 6502 assembler instruc-
tions. Next, the compiler invokes a 6502
assembler, which assembles STMP$$$ and
creates a relocatable object file named per-
mutate.rel. The assembler normally deletes
$TMPS$5$, but if you want to look at the
assembler source, the compiler can be forced
to stop after the compilation step. You can then
modify the assembler source and assemble it
in a separate step. The assembler can thus also
be used “stand-alone.”

The compiler can recognize 99 different er-
rors and when an error is detected, the line
number of the line (in the source) where the
error occurred and the error number are
displayed. The error handling of the compiler
is not foolproof though, for the compiler will
hang on some errors. For example, when you
forget the parentheses around the expression
after “while™ or “if,” you will get lots of er-
ror messages and after that the system will die.

I could always recover from this situation
by pressing <RESET>, but there is of
course no guarantee that all vital parts of the
operating system are still intact after the system
hang-up. The C verifier “lint” is not supplied
with the Aztec system, so there is no easy way.
to prevent the problems mentioned above from
occurring. It must be stressed though that, as

continued on next page

The Aztec C Compiler (Cont.)

long as a C-program was error-free, the com-
piler worked flawlessly in compiling all of the
programs 1 tried.

Finally, the linker must be invoked to load
and link the “gets,” “‘atoi” and “printf™ func-

tions. The function “‘atoi” belongs to the class
of utility functions, many of which are sup-
plied in the different libraries. The functions
“gets” and “printf” on the other hand belong
to the standard 1/0 functions. This class pro-

For use with

Apple i, lle &

Frankiin Computers

* inuse 280 rack sensor

* dwect arve spindle
mator

im line contiguration

ulomatic DOS selection

posiive disc lock lever

power indicator ight

* cabine! and cable
Included

* six month warmanty

units.

* All Units 100% Tested
* 100% Apple & Franklin Compatible

DISTAR

DISTAR Apple drive is not an adaptation of other mechanisms.
DISTAR is a wholly engineered unit for the Apple II. lle and Franklin
DISTAR's direct drive system allows for quieter operation, more
accurate tracking and longer life than conventional belt driven

We accept check, money order, VISA or MasterCard (include number and
expiration date). Please include $3.50 for shipping, handling and insurance in
continental U.S. California residents add 6% sales tax

BURKE AND ASSQCIATES, authorized representatives and distributors
1720 Los Angeles Avenue, #2241 » Simi Valley, CA 93063 = (805) 584-3220

Apple Il and Apple lle are registered trade marks of Apple Inc

5% Slim line
Apple II, lle
& Franklin
Floppy Disc
Drive

vides the link between the C-language and the
specific system that is used

1/O operations are not explicitly defined in
C, so the user is strongly dependent on the
functions supplied by the distributor of his C-
implementation. Manx Software Systems did
a good job here. All the functions you need
and many more are present (including
sources).

The linker is invoked with:
In permutate.rel sh65.lib

This command instructs the linker to search
the library sh63, which contains the standard
/0 and utility functions, for the functions
needed by permutate. The output of the linker
is an executable object file named permutate
Permutate can be executed from SHELL com
mand level, just like any other C-program, by
entering: permutate <RETURN>.

An important point is that the permutate ob-
ject we created above can only be executed
under the SHELL. This is because during the
link step only those functions will be loaded
that are not yet present in the SHELL. If a
function is already present, the linker
substitutes only the address of this function
in the object. It will be clear that this usually
reduces the size of the object considerably, but
prohibits execution of the object in a non
SHELL environment

It is, however, also possible to develop C-
software for use under DOS 3.3 or another
operating system. The only thing you have to
do is use a different library, namely the sa65
library, instead of the sh65 library in the link
command. The sa65 library contains all the
functions that are normally present in the
SHELL. so an object program constructed
with this library can be executed under DOS
3.3

Apart from the standard system 1/O and
utility library, there is also a library with a
complete set of mathematical functions. All
of these give double precision results (15-16
significant digits). The floating-point excep-
tions: overflow, underflow and division by zero
are supported and can be trapped by the user
program

A problem associated with the use of
“heavy’" software on microcomputers is that
object files may become so large that they do
not fit in memory anymore. Aztec C offers two
solutions to this problem

The first solution is very elegant. It consists
of the support of a pseudo-code compiler,
named cci. The cci compiler produces a
pseudo-code assembly source file that is

CIRCLE NUMBER 78

126 Jdulv 1984 © NIBBIF Maoazine

subsequently assembled by a pseudo-code
assembler. The relocatable pseudo-code ob-
Ject file, generated by the assembler, can be
processed by the linker to generate an ex-
ecutable object file. Such an object file will
generally be smaller (the manual says usually
by more than 50%) than the corresponding
6502 object file. The price you have to pay
is in terms of execution time, for a pseudo-
code object will execute more slowly than a
6502 object by a factor of from 5 to 20

A point worth noting is that relocatable
pseudo-code objects and relocatable 6502 ob-
jeets can “‘simultaneously” be processed by
the linker. This means that you can compile
time-critical routines with ¢65 and the others
with cci. The linker will then create a mixed
pseudo-code/6502 object, which behaves just
like a pure 6502 object.

The second solution to reduce the size of
objects is to use overlays. With overlays, the
program is divided into several segments.
There must be one root segment which always
remains in memory. The other segments are
loaded only when there are needed. It is possi-
ble to “nest” overlays; thus a segment that is
an overlay itself may load other overlays.

There are many other interesting options and
features of the C-system that would be worth
mentioning. However, space limitations pro-
hibit further explanations, so the remaining
highlights are briefly summarized below.

. Archives containing more than 150 source

files are included. Most of the standard /0,
system /O and utility routines mentioned
in the Kernighan and Ritchie book are
available. There are also several
preprepared “include™ files — among
others, STDIO.H.

- There are utilities to compare files, to dump

files (hex/ASCII),
Symbol Tables.

and o print sorted

. With the CONFIG program, the SHELL

Device Driver Tables can be adapted to
your system configuration,

. The source code of the device drivers is in-

cluded and custom drivers can be added
and loaded with a separate program

The SHELL supports batch processing;
that is, you can create a text file with
SHELL commands and execute it.
Parameters can easily be passed 1o the com-
mands and a loop facility is implemented,

. The SHELL also supports input/output

redirection (but no pipelining).

You may create your own libraries (that can
be used by the linker) with the MKLIB
program.

8. Interfacing C-programs with assembly
language programs is fully supported and
the calling conventions are explained.

9. It is possible to develop ROMable code,
although there are some restrictions. You
must, for example, (probably) rewrite some
start-up routines,

Configuration

The C-system was tested on an Apple [1 Plus
with a nonstandard 80-column board and on
a BASIS 108. (The C-system also works on
40-column Apples; upper-case is then
displayed in inverse.) Configuring the system
to 80-columns was no problem. But since the
80-column card was not standard, some extra
work had to be done in filling in the configura-
tion parameters of the Control Code Table
However, if you have an Apple //e with the
standard 80-column card or the Videx
Videoterm or Smarterm card, configuration
can be done in less than a minute.

Configuring the C-system for the 80-column
BASIS 108 turned out to be slightly more dif-
ficult, but since the manual gives detailed in-
formation about device drivers and Device

continued on next page

Table entries, it still was a relatively easy
operation.

The C-system worked immediately with my
Itoh printer, but two line feeds were given after
each carriage return. This problem was easily
solved, however, by reconfiguring the printer
flag with the CONFIG program.

Performance

To test the performance of the C-compiler,
1 entered some of the test programs described
in “Five C Compilers for CP/M 80" (See the
References section.) The tests in that article
(reference 2) were done on a 2-MHz Z80
system, so the comparisons below are of im-
portance to Z80 card owners, since they also
have the option to buy a CP/M version of C.
The results of the Aztec C-compiler are listed
in Table 1.

The primes program uses the ‘“sieve of
Eratosthenes™ algorithm to compute all primes
between 1 and 16380, and tests the compiler’s

mu Sec. inK
210 9
175 5.5
180 Ly
180 5.5

ability to handle loops and arrays.

The fibonacei program tests the overhead
involved in making function calls by recur-
sively computing the 24th term of the fibon-
acci series. The primes program as well as Ll}&
fibonacci program were executed 10 times in
a loop, so only 3.7 seconds were needed by

the primes program to find the 1899 primes
below 16380.

The third program, string-length, indicates
the efficiency of string (pointer) handling, by
passing a string (pointer) to a function, which
computes the length of the string 25,000 times.

continued on page 131

The Aztec C Compiler (Cont.)

The string-length-r program is the same as
string-length, except that the character count
variable was declared to be of storage class
“register.”

When the test results are compared with
those published in reference 2, it turns out that
the sizes of the generated objects, as well as
the compile and link times, do not deviate
much from the overall averages (per program)
realized by the other compilers. The deviations
that de exist are all in favor of the Aztec C-
compiler, except for the size of the primes pro-
gram, which was somewhat larger than
average.

It should be noted that all of the programs
in Table 1 are relatively small. (All source
files were less than 1K.) The sizes of the cor-
responding objects then become relatively
large, due to the fixed overhead of /O
routines. However, when compiling a large
program, the relative difference between
source and object will become much smaller.
For example, when you compile VED, which
consists of about 17.5K of source code, the
resulting object is only 15K. By the way, com-
piling and linking VED does take quite a long
time (more than 40 minutes).

Regarding the execution times of the primes
and the two string-length programs, the Aztec
C/6502 combination outperformed all of the
compilers discussed in reference 2. More
precisely, relative to the fastest corresponding
programs in reference 2, the primes program
ran 38 % faster, the string-length program 11%
faster, and the string-length-r program 25%
faster.

On the other hand, the fibonacci program
realized an extremely long execution time and
it ran more than three times slower than the
slowest program tested in reference 2.

Incidentally, the latter was also compiled
with an Aztec (CP/M) compiler. 1 could not
resist the temptation to look “under the hood,"
and it wrned out that there is indeed a
subroutine call to a fairly large subroutine
(.csav#) at the start of each function, which
adds a considerable amount of overhead.
Furthermore, function calls themselves are
placed between stack-save and stack-restore
routines, which also consume extra time.

Since the 6502 maintains only a 256-byte
stack, which is too small for C-programs, a
pseudo-stack is set up, and at each function
call the relevant parameters are pushed on this
pseudo-stack. The existence of a pseudo-stack
explains largely why function calling with the
6502 goes much slower than with the Z80.
Specifically, the latter processor is better
equipped for stack operations, as it has a 16-bit
stack pointer.

Lalso tested the performance of the permuta-
tion program, listed in Listing 1. This pro-
gram was compiled with the ¢65 compiler and
the cci compiler, and both versions were linked
with the different libraries, The results are
displayed in Table 2.

As can be seen, the increase in execution
time is about a factor of 6 when the cci com-
piler is used instead of the ¢65 compiler. When
comparing the size of the object generated by
the c65/sh65 combination with that of the
cci/shint combination, it appears that there is

a reduction of more than 50%. (This agrees
with what the manual says.) However, the size
of the object generated by the c65/shint com-
bination differs only by a small amount from
that of the cci/shint combination. Since the
c65/shint combination generates code that runs
much faster, this seems to be the best choice
here.

The reason why the c65/shint combination
turns out to be the best is that the generation
of the permutations is done with 6502 instruc-
tions, and the I/0 operations (loaded from the
shint library) are done with pseudo-code in-
structions. Since the permutation program uses
little I/O, it doesn't matter that slow pseudo
code is used for 1/O.

As far as execution time of the permutation
program is concerned, the c65 compiler per-
forms better than most other compilers 1 am
familiar with. The MBASIC compiler pro-
duced faster code though. The compiled

continued on page 133

Maxell
Floppy Disks

The Mini-Disks
with maximum quality.

e

The Aztec C Compiler (Cont.)

MBASIC version of the permutation program
needed only 33 seconds to generate the 8! per-
mutations (on a MicroSoft Z80 card). This im-
plies a speed advantage of a factor of 2 over
the C-version, So, I rewrote the C-permutation
program to speed it up a bit. The result is
displayed in Listing 2.

As can be seen, all time-critical operations
are now done with pointers. Pointer handling
is very efficiently done by Aztec C, for the
execution time (with the print statements
removed) dropped to 12 seconds. This is ex-
ceptionally fast, particularly when compared
to Applesoft, which needs nearly three
quarters of an hour to get the job done.

A final (small) test concerns the speed of
floating-point calculations. C supports only
double precision floating-point calculations,
which results in high precision, relative to
other languages. but in longer execution time.
In Aztec C. 1000 multiplications of floating-
point numbers take 18.2 seconds. Applesoft
accomplishes the same thing in 4.3 seconds.

Correcting for the difference in precision
(Applesoft uses a 4-byte mantissa while C uses
a T-byte mantissa) by assuming that execution
time is a quadratic function of the number of
mantissa bytes, we find that a multiplication
in C takes 40% more time (“per digit”) than
in Applesoft. When evaluating mathematical
functions, however, this percentage increases.
For example, C needs 170 seconds to compute
1000 sine functions, while Applesoft needs
only 27 seconds

User Friendliness

Judging the user friendliness of a software
package is a rather subjective matter. Personal-
ly, I rate the degree of user friendliness of the
Aztec C-system somewhere between medium
and high

The SHELL environment is about as user
friendly as the DOS 3.3 environment. Con-
figuring the C-system and processing C-
programs (i.e. editing, compiling, linking and
running) is not difficult, but you have to spend
some time in learning the commands and
options. As already mentioned, error handling
is not always done correctly. The compiler, in
particular, is sensitive 1o user errors, so in this
regard there is room for improvement

I experienced several system hang-ups. but
none of these caused loss of data. 1 want to
stress though that most system hang-ups were
caused by run-time errors in the C-programs
I wrote, and the C-system can of course not
be blamed for such errors.

It is a fact that the C-language is not a very
“easy” language and C-programs are harder

to debug than Applesoft (or Pascal) programs.
For example, if you exceed an array bound,
no one will tell you and the C-programmer is
on his own in finding out what caused the
resulting mess. C simply assumes that a pro-
gram contains no bugs. This implies that C
and the C-system may be less suited for those
who are just starting out with computers. On
the other hand, those who have a reasonable
amount of experience with the Apple should
encounter no real problems in working with
C on the Aztec C-system

Documentation

The documentation of the C-system (about
140 pages) is reasonable. It does not describe
the C-language, so if you have no experience
with C you have to buy a separate text. A good
choice, also recommended by the manual, 1s
The C Programming Language. (See the
References section.) This book provides a C-
tutorial, explanations of all the C-constructs

and many examples. Furthermore, the book
integrates well with the C-system, since many
utilities in the book are supplied with the
system.

Explanations in the documentation are brief,
which means that you must read things care-
fully. For example, I had some problems in
getting the ARCH program running, but after
closer reading, it turned out that all the
necessary information was there.

The documentation doesn’t mention
everything though. For example, the n-option
(search next occurrence of string) is mentioned
on VED's Help screen, but not in the
documentation. Furthermore, VED's wg
option (save file and quit) is mentioned nei-
ther on the Help screen nor in the documen-
tation

A more serious omission cOncerns an ex-
planation of the error messages of the linker.
For example, when the program “sinf" uses

continued on next page

wabash

When it comes
to Flexible Disks,
nobody does it
better than
Wabash.

MasterCard. Visa Accepted
Call Free:(800) 235-4137

PACIFIC
EXCHANGES
100 F Blvd

CIRCLE NUMBER 84

€0

the software co-operative

= Objective reviews and comparisons of
software available for your computer.
¢ Co-op prices.

Call or write for free information.

MICRO CO-OP

610 East Brook Drive
Arlington Heights, IL 60005
(312) 228-5115

Include your name, address, and the type
of computer you own.

CIRCLE NUMBER 85

July 1984 © NIBBLE Magazine 133

The Aztec C Compiler (Cont.)

the “sin” function, the library of floating-point
routines (flt65) must be specified. However,
when you enter In sinf.rel sh65.lib flt65.1ib,
you will get mysterious error messages. These
don't indicate that only the sequence of library
specifications is wrong. (The right specifica-
tion is In sinf.rel flt65.1ib sh65.1ib.)

The difficulty level of the documentation
roughly corresponds to the difficulty level of
the Kernighan and Ritchie text.

There is a fairly complicated technical sec-
tion, but you need only read it when you want
to do some of the more advanced applications,
or when you want to use the C-system with
nonstandard hardware. The manual has a table
of contents, but no index and glossary. Most
commands and functions are illustrated with
examples and a good tutorial is included.

There is a possibility of getting regular up-
dates of the C-system by paying an annual
maintenance fee of $30 (plus $35 if you
happen to live outside the USA). A new
release can also be purchased separately for

$30. There is no replacement policy, which
is not unreasonable since the C-system is not
copy-protected.

“The documentation doesn’t
mention everything...”

Conclusion

The Aztec C-system is one of the finest soft-
ware packages I have seen. The package is par-
ticularly valuable because of the many
C-sources that are included. This gives the
beginning C-student the opportunity to study
C-programs written by an expert, which is a
good way to get the hang of a language.
Furthermore, the fact that Aztec C fully sup-
ports the Kernighan and Ritchie standard is
important, for in this way you need not waste
your time in studying implementation dif-

ferences. It also considerably increases the
probability that the C-programs you develop
on the Apple will run without modifications
on other systems.

There are definitely bugs in the Aztec C-
system, but none of these appears to be very
serious as they do not prohibit normal opera-
tions (as long as the user does not make too
many errors). In fact, the number of bugs is
surprisingly small, taking into consideration
the fact that we are talking about some 650K
of code. Nevertheless. bugs should in princi-
ple not occur and Manx Software Systems
should attempt to remove them in the next
release.

The 6502 code generated by the sh65/5a65
compilers is generally very fast, except for the
code generated at function calls and floating
point operations. Compile and link times are
reasonable and the same applies to the sizes
of the generated 6502 objects. When the size
of the object is a critical factor, a considerable
size reduction can be realized by using the

pseudo-code compiler and/or the pseudo-
coded libraries.

Again, the Aztec C-system may be less
suited for those who do not have much ex-
perience with computers. Programming in a
compiler-linker based language is quite dif-
ferent from programming in an interpreter
ased language. It requires, among other things,
much more attention and patience from the

€rrors are even worse, since you have to track
those down by studying the source, without
the aid of run time error messages.

Summarizing, I can recommend the Aztec
C-system to anyone with a medium to high
degree of experience with the Apple, who is
interested in learning C, and/or wants to
develop C-programs in a “UNIX-like" en-
vironment.

Author’s Note: My thanks to William
Schouten for his many valuable comments and
suggestions.

References
1. The C Programming Language, BW. Kern-
ighan and D. Ritchie, Prentice-Hall, Inc.,
New Jersey, 1978.

user. This applies not only to writing programs For the time being, a few bugs have to be 2. “Five C Compilers for CP/M 80" C.O.
but also to typing in programs. Repairing one taken for granted, but in view of the overall Kern, Byte Magazine, August 1983, p.
single syntax error, for example, may cost you high quality of the C-system, these will un- 110-130. .
a considerable amount of time. Run-time | doubtedly be corrected in the near future. GIRCLE NUWBER 67 v
LISTING 1 LISTING 2
/= Permutation generator = /+ Permutation generator. pointer version
#define BUFFER 18 #define BUFFER 18
main () main ()
i {
char buf[BUFFER]; char buf[BUFFER] .
printf(“Enter number : printf(“"Enter number: ")
permutate(atoi (gets(buf)}). permutate(atoi (gets(buf)))
1 i
#define MAX 20 #define MAX 20
permutate(n) permutate(n)
nt n; int n
{ {
static int perm[MAX]; static char perm[MAX];
register i ,),t k,count=0 register count=@
register char i,t;
for (i=8; i<=n;, i++) register char =pn =pl . =ph;
perm[i]=i /v« init permarray «
for (i=0; 1<=n; [(++)
while (1) < /« force continuous loop «/ perm[il=i » init permarray s
count++ pn=perm+n
for (j=1 for (::) { = force continuous loop =
pri b perm[j])
printf("n"); count++
for (i1=n-1,perm[i]>=perm[i+1];i--) for (pl=pn-1.«pl>=«({pl+l):pl--)
£ (1) if (lepl)
break; = stop if i=@ « break
for (j=n;perm[jl<=perm[i];j--) for (ph=pn+l,;s--ph<==pl ;)
t=perm[], t=spl
pl=+ph
perm[j]=t, =ph=t;
for (j=n.k=i+1;k<):j-- . k++) | for (ph=pn+l,++pl<--ph;) {
t=perm[k]: t=epl,
perm[k]=perm[j]; =pl==«ph
perm[)]=t, «ph=t
\ \
; H : i
printf("No of permutations is %u ‘n" count), printf("No of permutations is %u ‘n", count);
’ ! v

July 1984 © NIBBLE Magazine 135

